logo search
Б 012 осень 15-16_ Готово / Учебники / Правовая статистика / Правовая статистика_Савюк_04

§ 2. Виды средних величин и техника их вычисления

405

где п варианты и/— веса. Это и есть формула средней арифме­тической взвешенной.

Смысл средней взвешенной можно продемонстрировать на та­ком примере. Вычисляя средний возраст осужденных в ВК для не­совершеннолетних, в которой содержатся лица 15, 16, 17 и 18 лет, его, конечно, нельзя определять исходя только из показателей при­веденного вариационного ряда:

Для правильного вычисления необходимо знать вес (частоту) указанных возрастных признаков, т.е. сколько человек каждой воз­растной группы находится в изучаемой совокупности.

Предположим, что в ВК содержится 1000 осужденных и они распределяются по возрастным группам следующим образом:

Возраст (варианты) 15 16

17 18

Чис/п

лиц (вес каждого варианта) . 100 150 150

Всего 1000 осужденных.

Действительный средний возраст изучаемой совокупности ра­вен 17,25 года (15х100+16х150+17х150+18х600)/1000.

Из сопоставления полученных данных — 16,5 и 17,25 года, лег­ко понять, почему между ними возникло расхождение. Дело именно, в весе каждого варианта, поскольку больший вес (600 осужденных) имеет вариант 18 лет, он и «перетянул» среднюю в свою сторону.

Средние арифметические находят самое широкое применение при анализе правонарушений, результатов деятельности по соци­альному контролю над ними, оценке работы правоохранительных органов и т.д.

Интересно отметить, что порой, не зная приведенной выше осо­бенности средних взвешенных, отклоняющихся в сторону вари­анта, обладающего большим весом, ее используют недобросове­стные работники торговли, создавая так называемую «фруктовую смесь».

Предположим, в магазин поступили сухофрукты — 100 кг аб­рикосов по цене 10 тыс. руб. за кг, 150 кг яблок по 4 тыс. руб. за кг, 406